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Abstract

Unpredictable nature of renewable energy (RE) sources like solar and wind chal-

lenges grid utilities to reliably match power supply and demand, across central-

ized grid networks. As a result, forecasting techniques have gained tremendous

importance among grid operators in order to economically integrate Photovoltaic

(PV) power sources. This thesis rendition aims at developing an Energy Man-

agement Scheme (EMS) with an accurate forecasting mechanism at the helm, to

dispatch a sample hybrid microgrid. Machine Learning (ML) based forecasting

is an effective tool used to estimate maximum power output from a solar genera-

tor against any given climate conditions. In this study, a deterministic (DTRM)

model for a 100kW PV generator is developed using standard 5-parameter solar

cell model. In this study a number of ML models like Gaussian Process Regres-

sion with Rational Quadratic (RQGPR) kernel, Gaussian Process Regression with

Matern 5/2 kernel (M5/2GPR), and Linear Support Vector Machine (LSVM) are

trained using climate dataset acquired from a weather station installed at Islam-

abad, Pakistan. Qualitative analysis of said algorithms is done using Root Mean

Squared Error (RMSE) as Key Performance Indicator (KPI). It is concluded that

RQGPR returned lowest RMSE value while DTRM returned fastest training time,

and vice versa. After DTRM, LSVM returned the highest RMSE level, followed

by M5/2GPR. EMS aided by RQGPR forecast engine is tasked with keeping grid

power balance and sufficient battery storage level, during uncertain climate con-

ditions. EMS performs the said task by appropriately dispatching energy sources

in a sample microgrid. Grid power balance is represented by the deviation of

grid frequency from nominal value of 50Hz. A number of microgrid variables are

observed and presented.
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Chapter 1

Introduction

1.1 Introduction

PV power forecasting has become a cornerstone of energy management schemes

in order to securely and economically integrate a PVG into the smart grid.

This study presents the importance of an accurate forecast model of a Photovoltaic

Generator (PVG) and integrates the forecasting model in an Energy Management

Scheme (EMS) developed for a hybrid microgrid. The main purpose of this thesis

is to compare various PVG modeling techniques in terms of performance metrics

and embed the most accurate model in an EMS. The EMS response is observed

and presented for a microgrid which is exposed to multiple grid contingency events

like islanding and supplementary loading events.

A mandatory requirement for a stable power grid operation is to balance the dif-

ferences between power supply and demand. Grid operators are responsible for

scheduling power reserves and they must be aware of future or upcoming values of

electric-load as well as supply. However, the problem is compounded for Renew-

able Energy Sources (RES), in which case the output power depends on chaotic

nature of climate conditions. RES power producers typically use short-term power

forecasts to prepare sale offers (bids) for electricity market. RES power producers

are heavily penalized if they fail to follow scheduled bid. Therefore, in order to

1
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boost profits and reduce penalties, an accurate forecast mechanism is extremely

important for RES power production.

Smart grid requirement entails a multi-agent architecture for microgrid operation.

Distributed Generators (DGs) like PVGs, wind turbines, Battery Storage System

(BSS) are considered microgrid agents. An EMS enforces a coherent strategy that

eventually develops cooperation between these agents. EMS also guarantees grid’s

operational reliability by undertaking uncertainties of renewable generation, de-

mand and market prices. Short-term forecasting engines are embedded in an EMS

to reduce forecast errors. In the first stage forecasting engines produce estimates

on uncertain grid parameters. In the second stage the EMS takes actions based

on those estimates. In this case the forecast accuracy has a direct impact on EMS

response; any imprecise prediction can produce devastating impact on the grid

e.g., undue maintenance, blackouts etc.

In essence, this thesis rendition models a forecasting engine for a 100kW PVG

in MATLAB. Physical or deterministic, and probabilistic modeling techniques

are used to approximate the PVG response towards changing climate conditions.

Deterministic modeling is based on PV parameters outlined in a manufacturer’s

datasheet, and the elementary physics that defines PVG response. Probabilistic

techniques are based on Machine Learning (ML) paradigm, and a number of main-

stream algorithms like Matern 5/2 Gaussian Process Regression (M5/2GPR),

Rational Quadratic Gaussian Process Regression (RQGPR), and Support Vector

Machine (SVM) are used. The performance of all these techniques are compared

in terms of key performance metrics like Root Mean Squared Error or RMSE. The

most accurate technique or the one with the lowest RMSE is chosen and integrated

in a Weighted Energy Scheduling Scheme (WESS). The importance of an accurate

forecast is validated by observing the WESS response during emergency events in

a hybrid microgrid.

It is concluded from the study that the proposed EMS with an accurate fore-

casting technique has performed satisfactorily under several conditions. Further
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future work is also recommended in the concluding chapter.

1.2 Background and Motivation

In the context of modern energy an ever-growing energy demand requires assur-

ances on grid safety and reliability, minimum differences between power supply

and demand, and integration of RE. Secure power generation, transmission and

distribution is extremely vulnerable due to several environmental, technical and

economic constraints. A power fluctuation of even a few minutes can potentially

set in motion a domino effect, resulting in conventional production units grinding

to a halt. The number of conventional production units are constantly required to

grow to mitigate supply-demand differences. RES based production units are an

invaluable alternative to more expensive nuclear, hydel or gas-turbine based power

producers. The input requirements of RES are extremely low. The low-carbon

footprint is an added benefit of RES power generation. Power fluctuations can

be greatly minimized by better RES integration in power grid, complemented by

demand response i.e., change electrical loads in response to changes in supply.

The concept of smart grid is based on a delivery mechanism that efficiently pro-

duces, transports and distributes the power from producers to consumers. Smart

grid heavily relies on modern communication and information technology infras-

tructure. However, the simplest goal of a smart grid is to balance electricity

generation and consumption using sensors, monitoring, analysis and communica-

tions. In this context, microgrid is used for decentralized energy production with

an ability to operate both grid-connected and off-grid. In grid-connected mode,

the microgrid can either provide or receive power from the utility grid. However,

during off-grid (or islanding) period, the microgrid must seamlessly supply power

to its local load. Generally, a microgrid is expected to observe power demand and

control power generators accordingly, provide ancillary services and inject power

into the utility grid if and when required.

PV power forecasting has become a cornerstone of energy management schemes in

order to securely and economically integrate a PVG into the smart grid. Ancillary
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costs associated with volatile PV power output can significantly be reduced due to

an accurate forecast. Grid operations like real-time power grid dispatch, storage

control, and electricity market clearing hugely benefit from ultra-short term fore-

casts [1], e.g., Australian market uses forecast resolution of 5-minutes as reported

in [2]. Short-term PV power forecasts (e.g., 24hours ahead) is also an important

tool for solar power traders. Forecasts can greatly enhance delivered power quality.

However, due to chaotic nature of climate conditions the accuracy of a PV model

can deteriorate. Model precision is compromised in the presence of atmospheric

conditions like temperature, cloud index, relative humidity etc.

The motivation of this work is to develop an EMS based on a prediction algorithm

for PVG power production. The robustness of EMS is evaluated against microgrid

contingency events e.g., unpredictable climate conditions, supplementary loading

and islanding events. The objective is to design and analyze an efficient EMS that

effectively dispatches power across a hybrid microgrid.

1.3 Construction of a Photovoltaic Generator

A Photovoltaic Generator is predominantly made of photovoltaic (PV) solar cells.

Other system components include batteries, charge controller, inverter etc. A

single PV cell can generate about 1 or 2 W of power approximately, which also

depends on the type of material used in PV cell construction [3]. PV cells are

connected together in specific configuration to achieve bigger modules with higher

power capacity. The maximum power capacity of a PV-module is not greater than

1kW. Modules can be grouped together to form PV-arrays – a crucial element in

a PVG based power plant.

According to the available statistics, global PV market is steadily growing at a

30 percent per annum. Reason behind this growth is attributed to reliable power

production without any fuel consumption, and the ability to deploy a PV power

house virtually at any place where the sun shines. Modular technology enables

to configure a PV system for varying power capacities, ranging from watts to

megawatts.
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One of the most disruptive factors in PV cell design is the limited efficiency of

a solar cell. Typically, a solar cell can offer an efficiency of 18.3 percent only,

depending on the construction technology. Current research indicates that all the

PV materials have physical limits on the electricity they can produce. For in-

stance, the maximum efficiency of crystalline Silicon is merely 28 percent.

Reliability of a PVG is a crucial factor and with a fault-tolerant circuit design

the impact of component failure on overall system can be minimized. A number

of redundant features are included in a PVG to protect module yield and restrict

power degradation. Due to partial shading issues, a PVG is protected from po-

tential hotspots by using bypass diodes across each solar cell. Typically, a PV

module consists of one bypass diode per 18 solar cells [3].

As stated earlier, almost always a stand-alone solar cell is not powerful enough

to produce required voltages and currents. Thereby a PV generator is shipped in

the form of a parallel/series circuit configuration of solar cells. Multiple solar cells

makeup a PV-module, multiple modules are assembled to form strings, multiple

strings are joined to form a PV array/generator, as shown in Fig (1.1).

For example, a PVG of 66-strings of 5-series connected modules (305W/module)

would yield a net power of 66x5x305=100 kW.

1.3.1 PV Module Performance Parameters

The following parameters are also used to qualify a PV module:

• Peak-Watt or Maximum Power Point (MPP): determined by measur-

ing the maximum power output of a PV module under laboratory Standard

Test Conditions (STC) i.e., 1000 W/m2 and 25oC.

• Power Output Power Output: represented in Watts and it is the power

available at the input of the charge controller or regulator.

• Energy Output: indicates the amount of energy produced by the module

during certain timer period, and represented in Watt-hour/m2.
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Figure 1.1: Solar Cell Configurations [4]

• Conversion Efficiency: is the ratio of energy delivered as output divided

by the energy input from the sun.

1.4 Photovoltaic Characteristics

Typical PV characteristics are shown in 1.2. As evident from the V-I curve, the

voltage and current of a solar cell do not exhibit a linear relationship. Additionally,

the P-V curve of the solar cell is non-monotonic. There are three important things

to note about this curve,

1. Open Circuit Voltage (VOC)–PV voltage for ∞ load resistance.

2. Short Circuit Current (ISC)–PV current for zero load resistance.

3. Maximum Power Point (MPP).

The non-monotonicity of graphs in Fig (1.2) is due to the following factors:
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Figure 1.2: PV Characteristics (P-V, and V-I) of a Typical Solar Cell [5]

.

• Solar Irradiation

• Operational temperature

• Load

The peak of the P-V curve (or the knee of the V-I curve) is known as the Maxi-

mum Power Point (MPP) of operation, and this is where all the above factors are

optimized to yield maximum PV efficiency.

1.5 Maximum Power Point Tracking

An optimum load choice is crucial for maximum efficiency extraction from a solar

cell. To fulfill this optimum load requirement modern power electronic converters

are equipped with Maximum Power Point Tracking (MPPT) operation [6]. Their

purpose is to sample the power output of PV-cell, analyze it and apply an optimal

load value to gain maximum power for a given set of ecological conditions [7]. By

controlling the amount of voltage from the PV-cell, the MPPT controllers achieve

this objective.

MPPT is not to be confused with the mechanical tracking mechanism of solar
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cells. MPPT is purely an electronic control system that tries to extract all the

instantaneous power a solar cell can generate. Several MPPT algorithms can

perform this task:

• Perturb and Observe (PO) Method.

• Incremental Conductance (IC) Method.

• Fractional Open-Circuit Voltage Method.

• Fractional Short-Circuit Current Method.

• Current Sweep Method.

• DC-Link Capacitor Droop Control Method.

The energy management scheme used in Chapter 4 provides power output from its

solar panels using the IC method. Therefore, the following section only discusses

the said method. Rest of the methods are beyond the scope of this thesis work.

1.5.1 Incremental Conductance (IC) Method

This method involves a continuous sampling of output voltage and current of

the PV-system. The output voltage is adjusted based on the incremental and

instantaneous conductance of the PV-system. The entire region of solar panel

operation is divided into two categories as indicated in 1.3 region-1 where dP/dV >

0, and region-2 where dP/dV < 0. The POP where dP/dV = 0 represents the

MPP. Substituting P = V I and solving the differential equation by chain rule

gives control law as depicted in equation 1.1 for MPPT controller,

d

dV
IV = 0

I
dV

dV
+ V

dI

dV
= 0

I + V
dI

dV
= 0

dI

dV
= − I

V

(1.1)
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Figure 1.3: Regions of Operation for Incremental Conductance Technique.

The IC algorithm implements control law in eq (1.1) according to the flowchart in

Fig (1.4).

1.6 Machine Learning

Machine learning is a branch of Artificial Intelligence (AI) and it empowers sys-

tems to automatically learn and improve from experience without the need of an

explicit software update. Machine learning is essentially concentrated on computer

programs that access historical data to learn. Real-world data is usually incom-

plete, or the data is collated in a variety of formats e.g., a real-world problem

might use different data types like sensor signals, text and images from camera

etc.

Learning begins with observations and meaningful data collection, either automat-

ically or manually. A computer powered by machine learning looks for patterns in

the data and makes better decisions in the future based on the past observations.

Primary aim of the entire practice is to make computers smart enough to learn
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Figure 1.4: Flow Chart Description of Incremental Conductance Technique.

automatically without human intervention [8]. Machine learning algorithms typi-

cally build a mathematical model based on historical observations called ”training

data” [9] [10].

Choosing the right machine learning model is all about trade-offs. A highly flex-

ible model might over-fit a data by including minor details like noise into final

model. On the other hand, a simple model might ignore vital modeling details.

Additionally, a designer is frequently confronted with tradeoffs between model

training speed, prediction accuracy and complexity level. A systematic workflow

is mandatory to choose an appropriate machine-learning algorithm [11].

1.7 Types of Machine Learning Algorithms

Machine learning algorithms are broadly classified into two categories as shown in

Fig 1.5.
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Figure 1.5: Machine Learning Algorithms Classification.

• Supervised Learning

• Unsupervised Learning

Supervised learning trains a model based on known input/s and predicts future

outputs accordingly. The outcome of supervised learning is a model that makes

predictions in the presence of uncertainty. Supervised learning techniques are fur-

ther divided into classification and regression techniques.

Unsupervised learning detects intrinsic patterns in input training data. Unsuper-

vised learning is useful in a situation when the user is uncertain what information

the data contains, or when the data is without labeled responses. Clustering is

an unsupervised learning technique used to find hidden patterns or groupings in a

data. Major applications of clustering are market research, gene sequence analysis

and object recognition [11]. Classification techniques provide prediction response

based on categorical input data. Examples of classification would be a distinction
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required to be made between a genuine email or a spam, or whether a tumor is

benign or cancerous. Other typical applications of classification are in the fields

of image and speech recognition and credit scoring.

1.8 Types of PV Power Forecast

Most of the PV power forecast techniques are designed to address a particular sce-

nario with an emphasis on improvement of forecast quality. A number of modeling

techniques can be used to forecast a PV power output. These techniques can be

categorized into three approaches [1, 12, 13].

• Deterministic or physical modeling.

• Statistical or probabilistic or stochastic modeling.

• Hybrid modeling.

Deterministic approach focuses on modeling non-linear PVG power output due to

ambient climate conditions. The primary advantage of deterministic technique is

virtually little need for historical operational details of the PVG. However, reli-

ability of deterministic forecasts is based on model’s historical performance and

therefore real-time forecast is less accurate and can lead to blackouts [14]. Deter-

ministic forecasts are typically made by physics-based models that overtly make

assumptions and simplifications, and are therefore have limited practical utility

[15]. Techniques like Numerical Weather Prediction (NWP) are based on internal

dynamics of a system and it is a deterministic technique [16]. Nevertheless, vari-

able weather conditions render NWP ineffective and imprecise [14].

Statistical or probabilistic or stochastic modeling approach enables machine learn-

ing techniques. Machine learning is a significant power forecasting tool with train-

ing capability empowered by historical data. The mixture of two or more statistical

techniques with deterministic approaches is called hybrid modeling.
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PV output power forecasting techniques can also be categorized based on predic-

tion time-horizon or the specific time-scale.

The forecasting techniques are categorized in terms of prediction time-horizons as

following [17].

• Long- or medium-term forecast (days or weeks ahead).

• Short-term forecast (24 hours or a few hours ahead).

• Ultra-short-term forecast (seconds or a few minutes ahead) [1].

Another PV output power forecasting categorization can be made based on the

type of input predictor or feature i.e.

• Direct prediction (training data is in time-series format e.g., Auto-Regressive

and Moving Average (ARMA) model).

• Indirect prediction (training data can be from wide variety of data-types

e.g., solar irradiance, temperature etc.) [18].

1.9 Key Performance Metrics

The performance comparison of ML models is complicated by a number of factors

like unpredictable weather conditions at different locations, variation in prediction

time-horizon (e.g., ultrashort or short) etc. Measurement precision is expected to

greatly hamper the prediction error performance. In this work, a few common

error indices are selected as model performance parameters [19]. Forecast error is

formulated using eq (1.2)

eh = Pm,h − Pp,h (1.2)

Here Pm,h is the average measured power and Pp,h represents forecasted power as

provided by a particular forecasting technique. The Mean Biased Error (MBE)
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and Mean Absolute Error (MAE) are presented in eq (1.3) and eq (1.4) Linear

cost function applications use MAE as an important performance metric.

MBE =
1

N

N∑
i=1

(Pm,h − Pp,h) (1.3)

MAE =
1

N

N∑
i=1

|Pm,h − Pp,h| (1.4)

Root Mean Squared Error (RMSE) is presented in eq (1.5). Here, N is total

number of samples in the data space. The only disadvantage of RMSE is due to

its inherent sensitivity to large prediction errors. Normalized RMSE is expressed

as percentage of mean value.

RMSE =

√√√√ 1

N

N∑
i=1

e2i (1.5)

The formula for Mean Absolute Percentage Error (MAPE) is illustrated in eq. 1.6.

However, for P(m,h) = 0 this index is undefined.

MAPE =
1

N

N∑
i=1

e2i |
Pm,h − Pp,h

Pm,h

| × 100 (1.6)

Correlation of the above-mentioned error indices is discussed in [19]. In this the-

sis rendition, RMSE is opted as the key performance index (KPI) for forecast

evaluation.

1.10 Thesis Outline

The rest of the thesis is divided into following chapters:

Chapter 2: discusses the work conducted on forecasting of PVG power production

in the context of a weighted energy scheduling scheme for effective power grid dis-

patch. The chapter also identifies the gap and formulates the problem statement.

Later, proposed methodology for the research work is presented.
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Chapter 3: outlines the modeling of a 100kW photovoltaic array using physical

or deterministic, and probabilistic or statistical forecast techniques. A benchmark

for model performance is also presented using elementary load line analysis of

the same PV array, in Simulink. A machine learning workflow is used to declare

the most suitable statistical technique, to be integrated in an EMS discussed in

Chapter 4.

Chapter 4: presents a weighted energy scheduling scheme or energy management

scheme for a number of hybrid microgrid contingency events such as unpredictable

climate conditions, supplementary loading and islanding events. The most suitable

PV power forecasting technique from Chapter 3 is also integrated in the scheduling

scheme. Critical grid parameters like voltage and frequency are monitored and

examined as per the International Electrotechnical Commission (IEC) guidelines.

Chapter 5: gives the conclusions drawn from the study work. Later the recom-

mended future work is also outlined in the end.

1.11 Summary

This introductory chapter presented the motivation of the research work presented

in this thesis rendition. This chapter also presented a number of background con-

cepts that are central to the research methodology presented in the next chapter.



Chapter 2

Literature Review

2.1 Literature Review

The development of Distributed Generators (DGs) based on Renewable Energy

(RE) technologies is expected to liberalize electricity market and reduce global

warming [20]. The active power output of PVG based DGs immensely fluctuate

due to climate variations. The solar irradiance received on the Earth’s surface

is non-uniform, non-stationary and periodic (24-hours) in nature, due to Earth’s

continuous rotation and revolution. Therefore, output power of a PVG plant also

exhibits non-stationary and periodic characteristic i.e., PVG power rises before

noon and declines afternoon. Conventional PV power prediction methods cannot

guarantee precise forecast without compensating for the non-stationary features

of PVG output power [21].

The addition of a PVG based DG into the utility grid is therefore expected to signif-

icantly impede grid operation reliability. RE integrated microgrids are extremely

vulnerable, since their operation is hugely dependent on meteorological conditions

[15]. Economic and reliable system operation, supported by accurate statistical

power forecast models is an important solution for PVG output volatility [22]. Pre-

cise internal active power reserve estimation of a Photovoltaic Generator (PVG) is

16
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extremely important to combat multiple smart grid issues e.g., balance demand-

supply differences, scheduling of generation, proactive power trading [23, 24]. An

accurate PVG power forecast model enables optimum power dispatch [25], cost ef-

ficiency, and reliable power source [26] with reduced grid power imbalance events.

Moreover, accurate forecast models facilitate Demand Side Management (DSM)

with efficient load consumption schedules. Accurate forecast models offer utili-

ties to effectively dispatch power [12, 23, 27, 28]. Electricity traders are more

often interested in one-day ahead PV power production prediction [29]. Modern

computer modeling has enabled methods and techniques for PV power forecast

research [14, 30]. Forecasting algorithms are divided into three categories i.e., de-

terministic, probabilistic, and hybrid [1, 12, 13]. Deterministic technique models

non-linear PVG output power due to ambient climate conditions. The primary

advantage of deterministic technique is virtually little need for historical opera-

tional details of the PVG. However, reliability of deterministic forecasts is based on

model’s historical performance and therefore real-time forecast is less accurate and

can lead to blackouts [14]. Deterministic forecasts are typically made by physics-

based models that overtly make assumptions and simplifications, and are therefore

have limited practical utility [15]. Techniques like Numerical Weather Prediction

(NWP) are based on internal dynamics of a system and it is a deterministic tech-

nique [16]. Nevertheless, variable weather conditions render NWP ineffective and

imprecise [14]. On the other hand, statistical approach enables machine learning

techniques. Machine learning is a significant power forecasting tool with training

capability empowered by historical data. The mixture of two or more stochastic

techniques with deterministic approaches is called hybrid modeling. The purpose

of any modeling technique is to overcome a particular set of shortcomings with an

overall improvement in forecast accuracy. In terms of prediction time horizons or

the specific time-scale, the PVG power forecast techniques are divided into three

types: Long or medium term forecast (days or weeks ahead), short term forecast

(one-day ahead or a few hours ahead), and ultra-short term forecast (seconds or

a few minutes ahead) [17]. Real-time power grid dispatch, storage control, and

electricity market clearing hugely benefit from ultra-short term forecasts [1], e.g.,
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Australian market uses forecast resolution of 5-minutes as reported in [2]. An

Extreme Learning Machine (ELM) is developed in [31] that accepts ambient tem-

perature and Global Horizontal Irradiance (GHI) values and provides a 24h-ahead

PVG power forecast. The results of ELM in [31] are benchmarked with a Back

Propagation Artificial Neural Network (BP-ANN). In terms of input variables, the

PVG power prediction techniques are classified into direct prediction, and indirect

prediction [18]. The historical data used in direct prediction techniques is typically

based on time-series format. Examples of direct prediction techniques are Auto-

Regressive and Moving Average Model (ARMA) and Autoregressive Integrated

Moving Average Model (ARIMA). On the other hand, indirect prediction takes

into account wider input data types e.g., solar irradiance, temperature, humidity

as furnished by NWP systems. Since PV power is more closely dependent on

meteorological factors, therefore indirect methods are considered more accurate

[18]. Nonlinear system approximation based on Artificial Neural Networks (ANN)

and Support Vector Machine (SVM) methods offer accurate forecast [32]. ANN

and SVM provide similar PVG power prediction accuracy; albeit SVM requires

fewer historical samples and are harder to train. On the other hand, ANN re-

quires a larger dataset to match SVM’s prediction accuracy, and their training

time increases significantly with increasing complexity of neural networks [18].

Comparison of deterministic and stochastic forecasts of a PVG day-ahead power

output is done in [33]. An uncertainty analysis technique is developed for an urban

microgrid with high PVG penetration [34]. First-in-first-out robust smoothing is

merged with a double grid search SVM algorithm for prediction of power [35].

Gaussian weighted regression algorithm is developed in [14] to predict short-term

PVG power output and the results are compared with multiple statistical tech-

niques in terms of key performance metrics. A joint technique based on SVM

and K-Nearest Neighbor algorithms is used in [36] for PVG power prediction.

Three different neural networks for PVG power prediction are optimized in [37]

using genetic algorithm. In [38] an adaptive neuro-fuzzy inference system (ANFIS)

and ANN predict PV ground source heat pump mechanism performance. Ensem-

ble forecasting is a major forecast algorithm used to predict PVG power output,
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which uses historical observations and NWP to provide a set of power predictions.

However, conventional ensemble prediction requires multiple simulations in sim-

ilar time-frames and locations [39]. Model selection is a crucial design element

for ensemble forecasting; no universally accepted model best describes any given

situation [14]. A multiple-model framework is proposed in [40] to obtain better

prediction accuracy. Ensemble forecasts contain subsets of all possible boundary

conditions, initial conditions, and model classes, all of which makes this method

computationally expensive [41]. One of the greatest challenges with introducing

PVGs in a power grid is to utilize its maximum benefits without losing grid’s

operational reliability. PVG with Sodium-Sulphur (NaS) based Battery Storage

System (BSS) is an economically viable option [42]. Energy scheduling schemes

like state of charge and load-pattern comparison extensively use analytical mod-

eling techniques [43, 44]. Without appropriate energy management in place, grid

voltage or frequency stability is compromised. If the PVG power output is greater

than the local demand at the Point of Common Coupling (PCC) then the excess

power from Voltage Source Converters (VSC) produce reverse power flow, creating

voltage rise in the feeder [45, 46]. High quality power flow for a hybrid microgrid

consisted of battery storage, PV converter, and wind turbine is ensured in [47] us-

ing model predictive control based Energy Management System (EMS). The EMS

is designed for a 3.5 MW system and simulated under variable energy supply and

demand scenarios. An energy management scheme in [43] charges/discharges stor-

age devices integrated with rooftop PVGs by matching the PV power output and

load profile. The strategy is based upon charging/discharging rates of the storage

devices. The study in [48] solves worst-case EMS/microgrid scenario as generated

from Taguchi’s orthogonal array testing. Optimal power flow problem is addressed

in [49] using Mixed Integer Linear Programming (MILP). Storage dispatch during

peak load hours is addressed in [35] by introducing weighted energy scheduling

scheme. A distributed EMS is robustly modeled in [50] formulates multiple oper-

ational costs observed in hybrid microgrids. The robust EMS in [50] decomposes

original power dispatch problem into smaller sub-problems and delegates those

sub-problems to local controllers. A multi-agent microgrid energy management
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scheme is presented in [51] for a day-ahead load dispatch, based on deep neural

networks with conventional generators, wind-turbines, PVGs and BSS serving as

agents. The paper in [52] presents a cooperative energy management strategy that

addresses outstanding issues like grid Time-of-Use (TOU) tariffs, storage capacity,

load and PVG power shedding etc.

2.2 Gap Analysis and Problem Statement

A PV based hybrid microgrid is expected to operate round the clock under the

guidelines of a dispatch schedule negotiated in the electricity market. Additionally,

the dispatch schedule should be flexible enough to accommodate ancillary services

like grid-frequency and grid-voltage regulation. Both of these requirements entail

an energy management scheme supplemented by an accurate short-term PV fore-

cast (few seconds to a minute). The PV power output is significantly dependent

on the chaotic climate conditions as stated in section 1.2. Therefore, forecast qual-

ity analysis of PV power output for multiple climate conditions is of paramount

importance. To the best of the author’s understanding none of the studies in 2.1

undertook algorithm prediction quality analysis for different weather conditions.

Performance of several short-term forecasting algorithms presented in Chapter 3

are highly dependent on the size of training dataset, as well as selection of their

own internal parameters (called hyper-parameters). Studies in [29] and [51] used

big datasets to achieve a significant performance merit. In author’s view, a highly

accurate short-term PV power prediction model trained with limited number of

observations, and validated by integrating in an EMS for a hybrid microgrid con-

trol is lacking in literature. Therefore, the problem statement of this thesis is:

Development of an ultra-short-term forecast mechanism that predicts a Photo-

voltaic generator’s power output. Manifest the importance of PV output power

forecast by comparing the performance of physical forecasting model and multiple
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mainstream machine-learning based models using key performance metrics. Inte-

grate the PVG forecast model in a weighted energy scheduling scheme for efficient

power dispatch in a hybrid microgrid.

2.3 Research Methodology

In this work, deterministic and statistical models of a 100kW PV-array are devel-

oped in MATLAB R©. The deterministic model is based on physical parameters

of a SunPower PV array as outlined in Appendix-A. The machine learning mod-

els are trained using Statistics and Machine Learning Toolbox from Mathworks.

The training samples are obtained from a Tier-1 weather station installed at Na-

tional University of Science and Technology (NUST), Islamabad. The weather

station is a joint venture of Government of Pakistan (GoP), National Renewable

Energy Laboratory (NREL) and United States Agency for International Devel-

opment (USAID) [53]. The most accurate model as qualified by the performance

metric is integrated in an energy management scheme for microgrid dispatch under

varying climate and load conditions. The EMS is developed and implemented in

Simulink using Simscape Electrical Toolbox.

2.4 Summary

This chapter presented the literature review of two active and overlapping research

domains i.e., PV output power forecast, and energy management system. Critical

analysis of the available literature is outlined; problem statement is presented and

the research methodology to approach the problem is presented.



Chapter 3

Forecast Modeling of PV Output

Power Production

3.1 Introduction

PVGs converts the incoming sunlight into electrical power output. However, the

magnitude of instantaneous power output from a PVG is difficult to predict due to

uncertain climate conditions. On a clear day a PVG is expected to produce maxi-

mum power output at noon, while moving cloud cover can significantly reduce the

amount of power generated. This unpredictability creates a lot of problems for a

utility grid operator, such as reverse power flow [45, 46]. Such scenarios can create

undue burden on backup energy reserves of a microgrid system. Grid issues like

power quality, generation control and protection are further complicated by the

intermittent PVG power output. PVG integration in a microgrid is significantly

inhibited if these problems are not addressed.

Safe and economic grid integration of PVG requires an accurate forecasting model

for PV power output. An accurate power forecast enables grid operators to gain

deeper insight of grid operation, issue commands, and optimally dispatch grid

power. This chapter presents design and development of an accurate forecast

22



Forecast Modeling of PV Output Power Production 23

model for PVG output power. First a benchmark model is developed using ele-

mentary loadline analysis of a 100kW PVG in Simulink. Maximum power output

estimation problem is formulated and a deterministic model is developed using

elementary physics that governs PV power output. Machine learning workflow is

used to train and validate statistical models like Matern 5/2 Gaussian Process Re-

gression (M5/2GPR), Rational Quadratic Gaussian Process Regression (RQGPR),

and Support Vector Machine (SVM). Based on Root Mean Squared Error (RMSE)

as Key Performance Indicator (KPI), a model with maximum accuracy is stated.

3.2 Loadline Analysis

Assume that a PV-cell is operating at a constant irradiance and temperature. A

loadline (as defined by a particular load) represents the point of operation (POP).

Intersection coordinates of any chosen loadline with the V-I curve represents a

POP. Applying an appropriate load to the PV is a critical operational element to

achieve maximum PV efficiency. As indicated in Fig (3.1), if a PV-cell experiences

too little load (point A) or too high load (point B) the power yield would be less

than available maximum power. Output power of PV-cell is zero on x and y-

intercepts of V-I curve, which represent ISC and VOC of a PV-cell respectively.

Figure 3.1: Loadline Analysis of a PV cell.
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Circuit represented in Fig (3.2) is simulated in Simulink to perform loadline anal-

ysis, and forms basis of entire benchmarking activity in this thesis rendition. A

variable AC voltage source is connected at the output terminals of a 100kW PV

system. The specifications of the said PV system are outlined in Appendix-A.

The variable AC voltage source is linearly varied from zero to PV’s Open Circuit

voltage (VOC). Consequently, the PV-system returns current and power vectors,

as represented in Fig (3.1). The maximum power value in the power vector repre-

sents MPP.

Figure 3.2: Circuit for Loadline Analysis.

3.3 PV Power Output Estimation Problem

The MPP of a PV generator chaotically changes according to varying GHI and

temperature conditions, throughout the year, as depicted in Fig (3.3). For in-

stance, MPP decreases with decreasing GHI while it increases with decreasing

temperatures, and vice versa. MPP estimation against ambient climate condi-

tions is a difficult task requiring an assistance from data science.

3.4 Deterministic Model of a Solar Cell

A deterministic (DTRM) model for PV power output forecast is based on the

internal physical dynamics of a PV cell. The forecast quality is directly dependent
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Figure 3.3: Surface Plot of GHI vs. Temperature vs. Maximum Power Output
of a 100kW PV Generator, as Calculated from Loadline Analysis in Section 3.2.

on PV cell’s fabrication limitations. Variable climate conditions further minimize

forecast quality. Therefore, a careful understanding of a PV cell’s band-gap energy

and semiconductor temperature coefficients is necessary. The following sections

summarize the impact of temperature and irradiance on a PV cell’s output power.

Maximum available power of a PV cell is related to the irradiance and temperature

settings the PV cell is operating under. DTRM principle requires an in-depth

understanding of the PV cell’s equivalent circuit analysis. The location of open

circuit voltage, short-circuit current and maximum available power on the volt-

watt curve is very important [54].

In this study, classical five-parameter PV-cell model is used for equivalent circuit

analysis. The five-parameters are solar irradiance dependent current source (IL),

reverse saturation current (ISat), diode quality factor, shunt resistances RSH and

series resistance (RS) Fig (3.4). Operation of this circuit is governed by eq (3.1)
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Figure 3.4: Equivalent Circuit Diagram of a PVG [55]

.

IL = Iph − (ID + ISH) (3.1)

where IL, IPh, ID and ISh represent load current, PV generated photocurrent,

diode current and shunt resistance current respectively.

Eq (3.2) states the current through the shunt resistance.

ISh =
VD
RSh

(3.2)

Where VD and RSh are forward diode voltage and shunt resistance, as stated by

eq (3.3) and respectively.

VD = VL +
NSer

NPar

ILRS,ref (3.3)

RSh = RS,ref

(
NSer

NPar

× SRef

SAmb

)
(3.4)

Parameters like RSh,ref and RS,ref represent reference shunt resistance and refer-

ence series resistance respectively and are typically obtained from a solar panel’s

datasheet. NSer and NPar represent no. of series modules and no. of parallel

strings, respectively. SRef is the nominal irradiance level 1000W/m2 while SAmb

represents ambient irradiance value. Photocurrent IPh generated by the PV cell

is given by eq (3.5),
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IPh = Npar(
Sref

SAmb

)(IPh,ref + αisc(TCell − TRef )) (3.5)

Here TRef and TCell represent reference temperature 25oC and cell temperature,

respectively. αisc represents temperature coefficient of photodiode’s short circuit

current ISc. ISc and photodiode’s open circuit voltage VOc are given by eq (3.6)

and (3.7) respectively.

ISc = ISc,ref + αisc(TCell − TRef )) (3.6)

VOc = VOc,ref + βOc(TCell − TRef )) (3.7)

Where ISc,ref , VOc,ref , and βOc represent ISc/module, VOc/module, and tempera-

ture coefficient of VOc respectively.

The dependence of diode’s band-gap energy εG with TCell is given by eq (3.8)

εG = εG,ref [1 + (
dεG
dT

)(TCell − TRef )] (3.8)

Here εG/dT is the slope of εG versus TCell plot, and εG,ref is reference-band-gap-

energy. Reverse saturation current ISat is depicted in eq (3.9)

ISat = ISat,refNPar(
TCell

TRef

)3 exp[
q

k
(
εref
TRef

− εG
TCell

)] (3.9)

where ISat,n and q are reverse saturation current per module and charge on an

electron respectively.

The forward diode current ID is given by eq

ID = ISat exp[
VD

VT,refNSer
TCell

TRef

− 1]
(3.10)
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Substituting eq (3.2), (3.3) and (3.10) in eq (3.1) yields load current as,

IL =
NPARSRef

SAmb

(IPH,ref + αIsc(TCell − TRef ))− ISat exp[
VD

VT,RefNSerTCell/TRef

]− RD

RSh

(3.11)

Deterministic product of IL with VL represents the PV output power as stated in

eq (3.12) and can easily be calculated based on parameters outlined in a typical

PV datasheet.

PDet = IL × VL (3.12)

3.5 Regression

Regression techniques primarily deal with continuous data e.g., variation in tem-

perature or irradiance or energy demand in an electrical grid. Typical applications

range from load forecasting in an electric grid to algorithm trading.

There are a number of model types used in regression problems such as ensembles,

trees etc. However, not every model type can provide enough accuracy to solve

a particular problem. This thesis undertakes mainstream regression models like

Linear Support Vector Machine (LSVM), Gaussian Process Regression with Ra-

tional Quadratic kernel (RQGPR) and Gaussian Process Regression with Matern

5/2 (M5/2GPR).

3.6 Machine Learning Roadmap

A systematic roadmap as shown in figure 3.5 is mandatory for effectively tackling

a machine-learning problem [11]. In this thesis rendition, the machine-learning

task is performed according to the said roadmap.
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Figure 3.5: Machine Learning Roadmap [11].

3.6.1 Data Acquisition

This dissertation discusses the machine learning application to improve power

prediction accuracy of hybrid microgrid systems, consisted exclusively on PV gen-

erators. Machine learning algorithms are integrated with PVG controller in order

to address the problem in section 3.2. In the next chapter, a microgrid scenario

with independent climate dataset recorded in Islamabad, Pakistan is discussed for

the said purpose. The training dataset is labeled as Global Horizontal Irradiance

(GHI), temperature and (the respective) maximum PV output power calculated

from loadline simulation of 100kW PVG network as discussed in section 3.2.

3.6.1.1 Dataset Description

This study undertakes climate dataset consisted of GHI and dry bulb temperature

information. The data is obtained from a weather station installed at public sector

university at Islamabad, Pakistan. The weather station is a collaboration since
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2008, between Government of Pakistan, NREL and USAID. The weather station

contains following measurement systems:

• Solys2 Tracker and CMP21 Pyranometer (by Kipp and Zonen),

• Campbell scientific CR1000 data logger,

• Temperature sensors.

Climate data is recorded at a 10-minute resolution by CR1000, and uploaded to

an online data storage. The climate dataset is available at [53] for non-commercial

purposes. This study uses the climate data from [53] which contains 132,259

readings of GHI and temperature. The raw climate data is recorded between

October, 2014 and June, 2017, as is shown in figure 3.6. This data is clearly

over-sufficient for machine learning purposes and must be pre-processed before

any meaningful information is available.

Figure 3.6: Islamabad Climate Dataset with Irradiance and Temperature
Features as Reported Between October, 2014 and June, 2017.
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3.6.2 Data Pre-Processing

Climate dataset shown in figure 3.6 is presented to pre-processing stage. Out-

liers like deviation from physical limits are isolated and night records are removed.

Weights of individual climate dataset features like GHI and temperature are deter-

mined using Neighborhood Component Analysis (NCA) feature engineering tech-

nique. Five-fold cross validation is used as regularization parameter in feature

selection procedure. The individual feature weights of GHI and temperature are

9.241 and 14.38 respectively. Since the feature weights are nonzero, both GHI and

temperature are considered crucial for ML model design. Numerical summary of

the pre-processed dataset is outlined in table 3.1.

Table 3.1: Numerical Summary of Dataset Obtained After Quality Control
procedure.

No.
Feature

/Target
Mean Median Mode Min. Max. Range Std. Dev.

1
Irradiance

(W/m2)
751.8 752.4 929.2 407.5 1140 732.5 171.5

2
Temperature

(◦C)
27.3 27.2 34.8 9.6 43.3 33.7 7.9

3
Maximum

Power (W )
74,465.5 74,483.2 NAN 101 112,373.2 112,272.2 16,364.5

3.6.3 Feature Selection

Feature engineering or feature selection technique reduces the number of features

in a model and eventually decreases the computational complexity of the overall

model [61]. Feature selection is a very important tool in order to counter the

overfitting problem. Pre-processed climate dataset contains two features i.e.,

• Global Horizontal Irradiance (GHI) and,
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Figure 3.7: Pre-processed Climate Dataset.

Figure 3.8: Maximum PVG Output Power Values as Obtained from Loadline
Analysis on Pre-processed Climate Dataset.
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• Air Temperature.

Since both the two features are crucial for PVG power output forecast accuracy,

therefore, offsetting any one of these features deteriorates model prediction quality.

Therefore, the feature-selection step is not applicable in this scenario.

3.6.4 Model Training

Regression models discussed in section 3.5 are individually trained using climate

dataset. The dataset is mathematically represented in equation 3.13,

~D = [(xj, yj)|j = 1, ..., n] (3.13)

where xj ∈ Ŗ2 (GHI, temperature), yj ∈ Ŗ1 (MPP), and n = Number of Obser-

vations (856 for climate dataset). The dataset ~D is used to develop a generalized

model, which distributes the output at unobserved input samples.

y = xTβ + ε (3.14)

where ε ∼ (0, σ2) and σ2) is error variance and β is a vector of coefficients that

are calculated from input training set.

3.6.5 Model Improvement

As discussed in section 3.5 models are iteratively trained using Statistics and Ma-

chine Learning Toolbox of MATLAB using the dataset ~D. A model with the best

error performance is used for PV power output estimation to assist the microgrid

discussed in the next chapter. Statistical techniques such as Gaussian Process Re-

gression (GPR) with Matern-5/2 and Rational Quadratic kernels, Linear Support

Vector Machine as discussed in section 3.5 apply the climate dataset for PV power

reserve estimation. The iteration procedure is divided into three sub-tasks i.e.,
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Figure 3.9: Optimization of LSVM Model with Temperature Predictor.

• Model Training,

• Model Validation,

• Model Testing.

The first two sub-tasks are performed simultaneously using 5-fold cross validation

on the Islamabad climate data ~D recorded between year 2014 and 2016. The

4-folds are used for model training, while 1-fold is reserved for model validation.

Testing sub-task is performed using the subset of ~D recorded between years 2016

and 2017. Three types of models are trained based on their respective super-

vised ML algorithms i.e., LSVM, M5/2GPR and RQGPR. Figure 3.9, 3.10, 3.11,

3.12, 3.13, and 3.14 present post-optimization response of LSVM, M5/2GPR and

RQGPR models versus individual predictors. Impact of optimization on algo-

rithm improvement is presented in individual inset figures. In case of LSVM in 3.9

and 3.10, the initial-fit and optimized-fit results are dissimilar; optimized results

closely resemble the original data. On the other hand, the original data, initial-fit

and optimized-fit results are convergent. Therefore, optimized-fit LSVM, initial-fit

M5/2GPR and initial-fit RQGPR models are opted for the following steps in ML

workflow.
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Figure 3.10: Optimization of LSVM Model with GHI Predictor.

Figure 3.11: Optimization of M5/2GPR Model with Temperature Predictor.

Figure 3.15 presents time series plot of individual ML forecasts, along with de-

terministic forecast discussed in section 3.4, against benchmarking loadline data.

Model forecasts in figure 3.15 are obtained using training and validation subset of

~D, recorded between 2014 and 2016; the inset plot depicts zoomed in display of

observations recorded over a period of 30 days in 2015. Model estimations in figure

3.16 are obtained using testing subset of ~D recorded between 2016 and 2017; the

inset plot depicts zoomed-in display of observations recorded over a period of 16

days in 2017. It can be concluded from the time-series that ML estimations out-

perform deterministic estimation. However, it is difficult to conclude that which
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Figure 3.12: Optimization of M5/2GPR Model with GHI predictior.

Figure 3.13: Optimization of RQGPR Model with Temperature Predictior.

Figure 3.14: Optimization of RQGPR Model with GHI Predictior.
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Figure 3.15: Training and Validation of ML Models for PVG Power Output
Forecast, as Benchmarked with Loadline Analysis.

of the three ML algorithms perform better than the rest. Additional analysis is

required in order to qualify an algorithm as more accurate than the other.

In this thesis, RMSE is used as a KPI to evaluate, compare and qualify each ML

algorithm. Figure 3.17 and 3.18 present individual ML algorithm performance for

various weather datasets recorded in Islamabad, Pakistan. Figure 3.17 presents

the algorithm-seasonal-performance for training and validation subset of ~D while

figure 3.18 presents the algorithm-seasonal-performance using testing subset of ~D.

In this study, the year-round weather distribution is as following:

• Spring – 1st March to 30th April,

• Summer – 1st May to 31st August,

• Winter – 1st November to 28th February,

• Autumn – 1st September to 31st October.

Conversely, figure 3.19 and 3.20 present algorithm performance against numer-

ous GHI bands/limits. Figure 3.19 presents the algorithm-GHI-performance for
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Figure 3.16: Testing of ML Models for PVG Power Output Prediction, as
Benchmarked with Loadline Analysis.

training and validation subset of ~D, while figure 3.20 presents the algorithm-GHI-

performance for testing subset of ~D. It can be easily concluded from visual analysis

that RQGPR reported lowest RMSE for all weather and GHI distributions. Train-

ing results of all the forecasting models is illustrated in Table 3.2. It is evident

that DTRM has the smallest training-time than the rest of algorithms. However,

DTRM also has substantially higher forecast error and is therefore ruled out for

proposed EMS presented in the next chapter. In contrast, RQGPR has a very high

training-time with extremely low forecast error. Interestingly, M5/2GPR perfor-

mance in terms of our KPI i.e., RMSE and training-time is between RQGPR and

LSVM. A real-time PVG output power forecast application would benefit greatly

from a quick-to-train M5/2GPR algorithm.

In this study the EMS design requirement declares an offline ML algorithm as

adequate, therefore, M5/2GPR is no selected either. Based on the performance

reflected in figures 3.15, 3.16, 3.17, 3.18, 3.19 and 3.20 and Table 3.2, RQGPR is

selected for the EMS design.
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Figure 3.17: Seasonal Sorted, RMSE Performance Comparison of ML Tech-
niques Computed for Training and Validation Subset of ~D. Base Value for

Percentage Error Calculation is the Rated PVG Power i.e., 100kW.

Table 3.2: Performance Parameters for Training and Validation Procedure.

Technique
Time to

Train (s)
MBE (W) MAPE (%) RMSE (W)

DTRM 0 -2363.130943 3.003178 2538.900345

LSVM 1.4511 -410.712384 1.092306 893.957481

M5/2GPR 10.11 0.000062 0.002553 2.673656

RQGPR 16.9 0.000061 0.001988 2.085560

Incorporation of unmodeled PV dynamics in future can lead to more accurate ML

models, for round the year microgrid service [62].

3.6.6 Model Deployment

The model selected in section 3.6.5 is deployed in a hybrid microgrid application,

as discussed in Chapter 4. Selected model is responsible for carefully predicting

the amount of power available in a PVG against particular climate conditions and

assist in grid restoration.
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Figure 3.18: Seasonal Sorted, RMSE Performance Comparison of ML Tech-
niques Computed for Testing Subset of ~D. Base Value for Percentage Error

Calculation is the Rated PVG Power i.e., 100kW.

Figure 3.19: GHI sorted, RMSE Performance Comparison of ML Techniques
Computed for Training and Validation Subset of ~D. Base Value for Percentage

Error Calculation is the Rated PVG Power i.e., 100kW.
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Figure 3.20: GHI Sorted, RMSE Performance Comparison of ML Techniques
Computed for Testing Subset of ~D. Base Value for Percentage Error Calculation

is the Rated PVG Power i.e., 100kW.

3.7 Summary

This chapter presented forecast modeling of PV power production for a particular

set of atmospheric conditions. A benchmark model using elementary loadline

analysis of a 100kW PVG is developed. Deterministic model of the said PVG is

also developed using classical 5-parameter modeling of a solar cell. Theoretical

background of Regression algorithms used for training machine learning (ML)

models is presented. A standard ML workflow is used to develop and optimize ML

models like Linear Support Vector Machine (LSVM), Gaussian Process Regression

(GPR) with Rational Quadratic kernel, and GPR with Matern 5/2 kernel. A

climate dataset acquired at weather station installed at National University of

Science and Technology (NUST) Islamabad, Pakistan., is used to train the said

machines. After several iterations of model improvement, GPR with RQ kernel is

declared as the most accurate equivalent of 100kW PVG.



Chapter 4

Application of PV Power Forecast

in a Hybrid Microgrid

4.1 Introduction

Hybrid microgrid is a cluster of various power sources like distributed generators

(DGs), energy storage systems, loads and an array of monitoring and protection

devices [63]. Overall energy efficiency in a utility grid greatly improves after mi-

crogrid interaction [64]. Additionally, a hybrid microgrid significantly promotes

consumption of indigenous energy resources like wind, biomass and solar, paving

way to diminished environmental pressure. Microgrid interaction with the util-

ity grid results in two operation modes, i.e., islanded mode and grid-connected

mode [65]. Microgrid management is an emerging field due to vast deployment

of intermittent renewable energy sources and increased diversity in loads [66].

Microgrid management is important for a number of grid requirements such as

supply-demand balance, minimize operational costs and emissions, and demand-

side load management [67, 68]. Another important example of grid requirement

is improvement of grid stability through optimal dispatch of power generation

sources in a hybrid microgrid scenario. Implementation of optimal dispatch for

renewable energy based DGs hugely depends on estimation of maximum available

42
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power, which that DG can commit. This is a challenging task due to the inter-

mittent nature of popular renewable resources e.g., wind is not always blowing,

and sun is not always shining. The intermittency problem is addressed by com-

plementing the microgrid with energy storage systems (ESS) and electric vehicles

[69]. This chapter presents a PV integrated microgrid scenario in the backdrop of

multiple maximum power estimation techniques as discussed in previous chapter.

This chapter resumes from section 3.6, by integrating the best-selected model in

a microgrid architecture. The importance of power prediction quality in terms of

microgrid stability during grid events like frequency deviation are explored.

4.2 System Description

This study presents design of an Energy Management Scheme (EMS) for a sample

hybrid microgrid. As shown in figure 4.1 and table 4.1, the sample microgrid is

consisted upon a 100kW baseload, a 10kW auxiliary load, a 100kW PV gener-

ator, a 10kAh battery storage, and a 75kW diesel generator. Sample microgrid

is interfaced with a 25kV/50Hz Medium Voltage (MV) grid at the point of com-

mon coupling (PCC). The 25kV grid is categorized as an MV bus [70]. The grid

architecture is designed, implemented and simulated in MATLAB/Simulink.

Table 4.1: List of Microgrid Components in Figure 4.1.

No Component Name Type Symbol Value Units

1 PV Generator Source PMPP 100 kW

2 Battery Storage Source PSTO−OUT 10 kAh

3 Diesel Generator Source Pbase 75 kW

4 Utility Grid - - ∞ kW

5 Baseload Load PLoad 75 kW

6 Auxiliary Load Load - 10 kW
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Figure 4.1: Block Diagram of Sample Hybrid Microgrid with Complete
Schematic Components.

In grid-connected state the PVG produces its maximum rated output i.e., MPP,

and is used to charge the Battery Storage System (BSS). Initially, BSS’s State of

Charge (SOC) is maintained at 80%. In grid-connected state, the diesel generator

powers the baseload. In islanded state, the grid is restored by concerted efforts of

diesel generator and PVG. Section 4.4 presents a detailed description of various

operational states. The 100kW PV-array in figure 4.1 accepts GHI and temper-

ature inputs and produces an unregulated current (I) and voltage (V) outputs in

accordance with VI-characteristics. The 10kAh BSS is also connected to the unreg-

ulated V-bus. The PV-array is immediately followed by a double-stage converter

system comprised of a boost DC/DC converter and a Voltage Source Converter

(VSC). The DC/DC converter stage is responsible for MPPT, whereas VSC stage

establishes utility grid interface. The proposed EMS controls the DC/DC con-

verter using IC algorithm discussed in section 1.5.1. The IC algorithm drives the

DC/DC output using a Pulse Width Modulation (PWM) signal. The VSC is

controlled by a three-phase sinusoidal PWM signals. As a result, the VSC pro-

duces three-phase voltages and currents, in sync with MV-grid’s frequency (fg).

A Phase-Locked-Loop (PLL) circuit is used to measure fg. The maximum power
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forecast mechanism for 100kW PVG accepts the same GHI and temperature val-

ues, as used by the PV-array to produce unregulated current (I) and voltage (V)

outputs. EMS uses the forecasted power value to switch between BSS and PVG,

according to the fluctuations in fg.

4.3 Energy Management Scheme

The Energy Management Scheme (EMS) is designed to effectively counter micro-

grid contingency events. According to [23, 24], grid contingency events occur due

to differences in grid power demand and supply. This difference is measured by

magnitude of fg deviating from its nominal value (50Hz in Pakistan). Microgrid’s

ability to keep fg deviations within a permissible limits is called inertia [71]. Severe

power imbalance can trigger blackouts in the absence of grid inertia. Equation 4.1

depicts total power output generated by microgrid sources for baseload and/or the

grid (depending upon the operational state).

POut = kbasePbase + ε1PMPP + ε2PSTO−Out (4.1)

Here,

• Pbase is controlled by coefficient kbase,

• PMPP is controlled by coefficient ε1 with limits [0, 1],

• PSTO−Out is controlled by coefficient ε2 with limits [−1, 0],

Coefficients ε1 and ε2 are individual gains of a dedicated Proportional Integral (PI)

controller. In grid-connected state, PVG exclusively charges BSS, while the diesel

generator supplies energy to the baseload and utility grid. In this state, equation

4.1 modifies into 4.2 i.e.,

POut = kbasePbase (4.2)
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In grid-connected state, PSTO−in) = PPV = PMPP and PSTO−out = 0. In other

words, the coefficient ε1 = 1 and therefore, the PVG is operating at MPP. It is

important to highlight the fact that PMPP is the forecasted maximum PVG output

power obtained from RQGPR based estimator. For more details on RQGPR refer

to section 3.6.6. In islanding-state, EMS measures frequency error (∆fg) from

nominal value of 50Hz. The grid power imbalance is proportional to ∆fg, as

represented mathematically in equation 4.3:

PLoad − POut = PIMB ∝ fg (4.3)

Immediately after islanding state, the EMS starts comparing PMPP with a fixed

threshold (in this case 50%). As soon as PMPP drops below threshold limit, EMS

enters low-PV-islanded energy state. In this state EMS summons BSS to discharge

and restore grid balance. BSS is discharged when the unregulated V-bus is below

the BSS nominal voltage (+200V). In this case the power equation 4.1 modifies

into equation 4.4:

POut = kbasePbase+ | ε2(PMPP + PSTO−out) | (4.4)

On the other hand if PMPP is above the threshold limit then the EMS is in high-

PV islanded energy state. In this state BSS neither charges nor discharges; SOC

of the BSS is kept at the same level as when EMS entered islanding state, i.e.,

PSTO−in = PSTO−out = 0. PVG alongside the diesel generator restores or maintains

the microgrid balance. The power equation 4.1 modifies into 4.5:

POut = kbasePbase + ε1PMPP (4.5)

Figure 4.2 presents the flowchart of EMS:
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Figure 4.2: Flowchart of Energy Management Scheme.

4.4 Simulation Results

This study proposes a microgrid management strategy that effectively switches

between four states i.e., grid-connected, islanding, low-PV-islanded energy, and

high-PV-islanded energy states. Table 4.2 and figure 4.3 summarize switching

conditions, and status or roles played by individual energy sources. This section

presents the results of simulated contingency events for the sample hybrid micro-

grid.
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Table 4.2: List of EMS States and Status/Roles Played by Individual Energy
Sources.

State State Title PVG BSS
Diesel Gener-
ator

1
Grid-
Connected

Charge BSS at MPP. SOC is rising.

2 Islanding
Stop BSS charg-
ing. Provide grid
frequency support.

SOC is at a con-
stant level.

Operating at an
optimal value for

3
High-PV-
Islanded
Energy

Provide grid fre-
quency support.

SOC is at a con-
stant level.

microgrid sup-
port.

4
Low-PV-
Islanded
Energy

Provide grid fre-
quency support.

SOC is drop-
ping. Provide
grid frequency
support

4.4.1 State-1: Grid-Connected

Initially, the microgrid is connected to the utility grid and the baseload receives

active power from the utility grid exclusively. The microgrid operation is controlled

by the power equation 4.2. As mentioned in table 4.2, the PVG is charging BSS

by operating at MPP, and diesel generator is powering the utility grid as well as

baseload. In this state, active power contribution from PVG and BSS is virtually

zero, as shown in figure 4.10. Figure 4.6 displays negative power output from BSS,

which means batteries are charging. As a result, SOC of the BSS is rising from

initial level of 80% as shown in figure 4.9.

4.4.2 State-2: Islanding

Islanding protocol is initiated by the EMS right after utility grid experiences a

phase-to-phase short circuit fault. The fault is immediately isolated by circuit

breakers. A subsequent microgrid imbalance creates a drop in grid-frequency value

as depicted in figure 4.5. EMS stops BSS from charging as represented by zero

energy flow in figure 4.6, and removes energy imbalance using the active power
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Figure 4.3: State Diagram for Proposed EMS.

contribution of diesel generator and PVG as shown in figure 4.10 and 4.11, respec-

tively. Grid frequency is restored at nominal value of 50Hz as shown in figure 4.5,

at the end of state-2.

4.4.3 State-3: High-PV-Islanded Energy

After stat-2, EMS tracks potential grid disrupting climate-conditions and energy-

demand. A drop in GHI and temperature shown in figure 4.4, between time

t = [5s, 25s] is deliberately introduced in simulation. As a result, grid frequency

deviation represented by ∆fg 6= 0 is reported in figure 4.5. More specifically, the

reason for ∆fg 6= 0 is due to reduced PMPP and shown in figure 4.6. However, as

long as PMPP is greater than the threshold limit discussed in section 4.4.3, BSS

does not release any energy. EMS is still able to keep grid stable without BSS

during an auxiliary loading event at time t = 20s as shown in figure 4.5 and 4.9. It

is important to state the significance of an accurate PVG output power forecast,
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without which EMS can incorrectly trigger BSS and enter state-4 as discussed in

sub-section 4.4.4.

A VSC produces a constant amplitude sine-wave output voltage if its input voltage

is a constant DC bus. It is shown in figure 4.8 that a constant DC bus voltage

of +500V withstands during states 1, 2, and 3. The DC bus remains constant

regardless of DC/DC converter’s input voltage fluctuations shown in figure 4.7

due to climate conditions. Figure 4.10 shows active power, whereas figure 4.11

shows reactive power from VSC into the grid. In this state, RMS grid voltage,

grid frequency and THD remain voltage disturbances standard EN 50160 [72]

compliant; plots are shown in figures 4.12 and 4.13. After utility grid reconnects,

the Microgrid returns to state-1.

Figure 4.4: Simulated GHI and Temperature Profile in State-3 of Proposed
EMS.

4.4.4 State-4: Low-PV-Islanded Energy

This state is specifically designed for severely low PVG output energy level, as

observed at dusk or dawn. As concluded in section 3.4, PVG energy level decrease

with decreasing GHI and increasing temperature conditions. PVG energy is de-

liberately driven below the threshold limit discussed in section 4.4.3 using climate
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Figure 4.5: Grid Frequency Chart for State-3 Operation.

Figure 4.6: PVG’s Forecasted and Feedback DC Power, and Battery Storage
System Output Power for State-3 Operation.

profile presented in figure 4.14 . Consequently, EMS officially enters state-4. For

the sake of continuity, EMS is deliberately kept in state-3. The deployed PVG

output power estimator as presented in section 3.6.6, notifies EMS about drastic

loss of energy supply. As a result, EMS hastily moves BSS in lower output voltage

range, as illustrated in figure 4.16. Subsequently, BSS discharges and its SOC level

decreases, as shown in figures 4.16 and 4.17. In the end, grid frequency stabilizes

at nominal level of 50Hz as depicted in figure 4.15 and grid is restored. The grid

frequency fluctuations are EN-50160 quality standard compliant [72].
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Figure 4.7: DC/DC converter Stage’s Input Voltage for State-3 Operation.

Figure 4.8: DC/DC Converter Stage’s Output Voltage for State-3 Operation.
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Figure 4.9: State of Charge (SOC) Level for BSS During State-3 Operation.

Figure 4.10: Active and Reactive Power Recorded at PCC During State-3
Operation.
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Figure 4.11: Output Active Power Supplied by Diesel Generator to the Utility
Grid During State-3 Operation.

Figure 4.12: Phase-to-Neutral True RMS Grid Voltage During State-3 Oper-
ation.
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Figure 4.13: Total Harmonic Distortion in Phase-to-Neutral Grid Voltage
During State-3 Operation.

Figure 4.14: Simulated GHI and Temperature Profile in State-4 of Proposed
EMS.
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Figure 4.15: Grid Frequency Chart for State-4 Operation.

Figure 4.16: PVG’s Forecasted and Aactual DC Power Output Level and BSS
Output Power Level for State-4 Operation.
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Figure 4.17: State of Charge (SOC) Level for BSS During State-4 Operation.

Figure 4.18: Output Active and Reactive Powers at PCC as Supplied by VSC
to the Utility Grid.

Reason for zero reactive power (approximately) flow from VSC into grid as shown

in figure 4.18 is due to sinusoidal waveform of grid-current as shonw in figure 4.20.

After state-4 the grid voltage level is restored back to nominal 20kV RMS, as

shown in figure 4.19.
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Figure 4.19: Instantaneous Phase-to-Neutral Grid Voltage, as Microgrid Tran-
sitions from State-3 into State-4.

Figure 4.20: Instantaneous Grid Current, as Microgrid Transitions from State-
3 into State-4.

Grid’s true RMS voltage and THD levels are also EN-50160 compliant [74], as

shown in figures 4.21 and 4.22 respectively. Inset in figure 4.21 displays a voltage

dip before reentry in state-1. The dip lasts about 20ms and is categorized as swell,

according to IEEE Std. 1159-2019 [73].
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Figure 4.21: Phase-to-Neutral True RMS Grid Voltage During State-4 Oper-
ation.

Figure 4.22: Total Harmonic Distortion in phase-to-Neutral Grid Voltage
During State-4 Operation.
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4.5 Summary

This chapter presented the application of PV power production forecast in the

context of a sample hybrid microgrid. The major components of the sample mi-

crogrid are listed as a 100kW PV generator, 10kAh battery storage system, 75kW

diesel generator, 75kW baseload, and 10kW auxiliary load. A multi-mode En-

ergy Management Scheme (EMS) is proposed and operational details are outlined

using a state diagram and a flowchart. Simulation results are presented for con-

tingency events like source and load fluctuations. Transition between modes is

presented using time-series charts and results are found within compliance limits

set by standard EN-50160. It is concluded that an accurate PV output power

forecast is crucial for stable hybrid microgrid operation.



Chapter 5

Conclusion and Future Work

5.1 Introduction

This chapter presents the conclusions drawn from this study, and a few recom-

mendations for future work are also mentioned at the end.

5.2 Conclusion

This study presented a Machine Learning (ML) based Energy Management Scheme

(EMS) for energy/power control of a hybrid microgrid. The ML model is selected

from a pool of forecast models for a Photovoltaic Generator’s (PVG) power out-

put. The pool contained a deterministic model and three probabilistic models. A

100kW PVG benchmark model based on elementary loadline analysis is created for

the sake of model/algorithm/technique qualification in Simulink R©. Classical five-

parameter solar cell model is used to formulate a deterministic (DTRM) predic-

tion technique. DTRM model is a physical representation of PVG power output.

DTRM model accepts global horizontal irradiance (GHI) and ambient temper-

ature as inputs to forecast available maximum power output of the said PVG

system. Probabilistic techniques are based on Machine Learning (ML) paradigm,
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and a number of mainstream algorithms like Matern 5/2 Gaussian Process Regres-

sion (M5/2GPR), Rational Quadratic Gaussian Process Regression (RQGPR), and

Support Vector Machine (SVM) are used. The GHI and temperature data of Is-

lamabad, Pakistan is used for ML model training, validation, and testing. The

performance of the entire pool of techniques is compared in terms of a quality

index i.e., Root Mean Squared Error (RMSE). The most accurate technique or

the one with the lowest RMSE is chosen and integrated in a proposed Energy

Management Scheme (EMS).

Importance of an accurate forecast is validated by observing the EMS response

during emergency events in a sample hybrid microgrid. The sample microgrid

components are 100kW PVG, diesel generator, loads, and battery-based energy

storage system. The proposed EMS distributes grid operation in four states, i.e.,

grid-connected state, islanding state, high-PV-islanded energy state, and low-PV-

islanded energy state. The microgrid response is studied in the presence of sev-

eral grid contingency events like source fluctuations and load fluctuations. The

source fluctuations like GHI rise and fall are attributed to the non-uniform and

non-stationary periodic rotational motion of Earth around the sun. The load fluc-

tuations are due to uncertain consumption patterns of the electricity consumer.

The grid imbalance is directly proportional to the grid frequency. Therefore, the

grid frequency is considered an excellent grid health indicator; proposed EMS is

completely based on regulation of grid frequency. The EMS continuously monitors

the grid frequency and controls multiple energy sources at its disposal until the

grid frequency is reverted back to its nominal value at 50Hz. Results in graphical

charts validate optimized grid performance via compliance to the EN-50160 stan-

dard.

It is concluded that the non-linear and monotonic relationship between PV power

output and input climate conditions is best described by a Gaussian Process Re-

gression (GPR) model with Rational Quadratic (RQ) kernel function. Even though

the prediction quality of RQ based GPR is very good, the training-time of DTRM

and Linear Support Vector Machine (LSVM) are far better. Therefore, the RQ
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based GPR model is deployed in the EMS and microgrid response is observed.

5.3 Future Work

A PV output power forecast technique is deployed in an EMS to manage energy

components of a hybrid microgrid. EMS response is implemented and validated

in a MATLAB R© simulation. It is recommended that the proposed EMS must be

validated using a hardware-in-the-loop (HIL) microgrid testbed like the one used

in [74]. It is also desired that the EMS should be validated using instruments

like multi-meters, Pyranometer and temperature transducers for real-time data

acquisition and decision making. This work considered GHI and temperature as

primary features for ML model training, validation and testing. However, a num-

ber of unmodeled dynamics like barometric pressure, diffuse horizontal irradiance,

aging, partial shading, copper losses in interconnect wires, current leakage due

to weak insulation etc., are potential ML features. Climate dataset can also be

improved with advanced features like satellite imaging, cloud movement etc. In-

corporation of these dynamics in future can lead to more accurate ML models, for

round the year microgrid service.



Appendix A

Appendix

Table A.1: Physical Parameters of 100kW PV Generator.

Parameters Symbol Value Units

Model Name -
SunPower Module
(SPR-305E-WHT-D)

-

No. of Cells NCELL 96 -
No. of Series Modules NSER 5 -
No. of Parallel Strings NPAR 66 -

Maximum Power per module 305.226 - W
Maximum Power per array PMPP 100.7 kW

Short circuit current per module ISC,n 5.9 A
Temp. coefficient of VOC βvoc -0.273 %/oC

Open circuit voltage per module VOC,n 64.2 V
Temp. coefficient of ISC αiSC 0.06175 %/oC

Photocurrent IPH,ref 6.01 A
Reverse saturation current ISAT,ref 6.3014 pA

Ideality factor ni 0.945 -
Parallel Resistance per module RSH,ref 269.59 Ohm
Series Resistance per module RSER,ref 0.375 Ohm

Nominal Irradiance Sn 1000 W/m2

Reference temperature TRef 298.15 K
εg versus TCell slope dεg/dT -0.00027 eV/K

Electron Charge q 1.603e-19 C
Thermal voltage reference VT,ref 2.331 V
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